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ABSTRACT

This note describes the Lincoln Integrated Speech Synthesizer (LISSYN),
a general-purpose computer intended for speech processing, whose central
processor is made from ECL gate arrays (large scale integrated circuits i

custom built at Lincoln Laboratory).

! The goal was to use gate arrays to implement in real time the synthesis
portion of a linear predictive vocoder operating at 4800 bits/sec. The

design process stressed minimizing the number of different kinds of gate arrays
and the number of non-gate-array circuit packages. The result is a general
purpose computer structure featuring: single 1024 x 16 memory for data and
program, 200 nsec instruction cycle, 950 nsec add/shift multiply, binary

serial input, analog output via a 12-bit D/A converter and desampling filter,
0.35 cu. ft. volume, 60 watts DC power, 11 gate arrays of 5 types, 30 memory
IC's, 27 other circuit packages. The LISSYN runs the linear predictive speech

synthesis in 43% of real time.
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E. INTRODUCTION

A. History
Over the past few years, Lincoln Laboratory has been developing
an ECL gate array technology as a means of providing fast turn-around time for
the design of custom, high-speed circuits of high levels of complexity. }
A fixed set of diffusions defines the transistors and resistors of a basic é
cell array which can be customized by the patterning of two levels of metal

interconnect. The array is comprised of an 8x8 matrix of cells each of the

complexity of a triple 3-input gate. In cooperation with efforts in digital
speech research at the Laboratory, a gate array demonstration project was
conceived using the new techniques to fabricate the synthesizer portion of a
Linear Predictive Coding (LPC) algorithml’2 for digital speech coding. The

Lincoln Integrated Speech Synthesizer (LISSYN) was designed and built for this

purpose. The LPC algorithm has become prominent due to the simplicity of

its implementation in comparison with other narrowband speech coding methods.
Since the synthesizer (receiver) portion of the algorithm is simpler than the
analyzer (transmitter portion), this device represented a suitable first major
application of the gate array technology. Implementation of the entire LPC
algorithm would require extra memory and a more complex architecture, requiring
more effort and time than necessary to achieve the goals of the gate array

} development project.

A receive-only processor could be used in speech terminal tandeming

experiments and therefore would fill a needed role in current speech research

while demonstrating the gate array capabilities and revealing needed improvements




in processing techniques. In addition, potential systems applications for
stand-alone LPC synthesizers have been identified. One means of providing a
free-form type of voice conferencing capability is to sum the analog speech
signals of all conference participants at a central point, and to distribute

the result back to the individual speakers. When vocoders are used, this method
requires that a number of synthesizers be provided at the inputs to the central
summing junction, followed by a single vocoder analyzer at its output. In this
way all voice traffic to and from the analog summing point is digital. Although
the voice quality of a system of this type is currently not as acceptable as that
of some other forms of digital conferencing, one reason it has not been too

seriously considered is the assumed high cost of multiple LPC synthesizers.

The demonstration of a potentially inexpensive implementation of such devices

using LSI technology is therefore valuable in that context. A second

application for a stand-alone LPC synthesizer is in the case of wideband-
narrowband interoperability. A currently favored solution to this problem includes
the use of vocoder tandems, in which a 2.4 Kb/s LPC stream is converted to analog
form and redigitized at a 16 Kb/s rate by a CVSD encoder. This particular

tandem suffers from severe quality degradation, while the reverse tandem

(16 Kb/s to 2.4 Kb/s) yields more acceptable results. One could dispense with

the LPC to CVSD conversion if wideband users could accommodate 2.4 Kb/s

LPC data directly. This requires the use of an LPC synthesizer in the wideband
facility, thereby increasing the cost and size of the terminal equipment.
Again, the demonstration of a potentially small and inexpensive LSI approach

to this problem is an appropriate exercise. i
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B. Basic Architecture

The high speed of ECL circuits permits the retention of architectural
simplicity rather than the use of tricks such as pipelining to achieve adequate
speed. In order to simplify design and constructior of the LISSYN and wminimize
the number of gate arrays required, while including almost all logic except
that intrinsically unsuitable for ECL gate arrays (mostly memory and TTL),

4 an add/shift multiplier using a hard-wired control signal sequence was adopted
instead of the use of separate multiplier hardware. Although the multiply
operations occupy 42% of the LPC synthesizer processing time and no other
processing could be done in parallel, the overall speed proved to be more than
twice that required for real-time speech synthesis.

The second architectural decision hinged on the availability
of a 1024x1 ECL RAM. Even though there turned out to be only 85 words of
dynamic storage needed for the LPC synthesis algorithm, it cost little more ﬁ
in money and power and no more in space to use 1024x1 ECL RAMs instead of i
256x1 ECL RAMs. The 1024-word memory was then large enough for instructions
and tables of constants, as well as for dynamic storage. Since memory is the
principal use of extra packages beyond gate arrays, it was decided to build the
LISSYN with a single memory, a 1024x16 ECL RAM.

Once this decision was made, three other architectural features
followed:

1.  There would be no overlapping of instruction fetch and operand

fetch/store to speed up the machine.

2 Instruction words would be only 16 bits long, and therefore
a control memory would be needed tu decode the instructions.
3. Since the LISSYN was required to operate in a stand-alone

mode as an LPC synthesizer, a separate non-volatile memory was needed
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to store an image of the LPC program and tables. Since this memory

could be slow, and since at that time TTL ROM's were available with

16 times the bit density of ECL ROM's, it was decided to implement
that memory with four 1024 x 4 TTL ROM packages. Even though it cost
eight other packages to interface the image ROM with the LISSYN, the
overall package count was less than that for using ECL ROM for program
and tables and the resultant machine was more versatile. Testing was
also made much easier, since the program portion of memory didn't have
to be replaced by a dynamic image memory in order to run diagnostics.
It would not have been trivial to plug in such an image memory. Cable

delays alone would have compromised the LISSYN timing.

s

The resultant LISSYN architecture is shown in Figure 1 as a block
diagramorganized to show the balance between gate arrays and other packages.
The number of packages needed for each block is shown circled. Not included
is the tester, a detachable box which is used for hardware and software debugging.
The central processor is made almost entirely of 11 gate arrays of 5 different
types: four 4-bit ALU slices, four 4-bit Register Transfer slices (containing
and connecting the remaining general registers), two control gate arrays,
one timing phase generator. Only 8 commercial 16-pin ECL DIP's were needed to
complete the central processor logic, including interfacing with the tester,
with the ECL memories, and with the panel switches.

The main memory has 1024 16-bit words of ECL RAM and 32 16-bit
words of ECL ROM. The latter is used by the tester and also holds a bootstrap
program that loads the image memory into the RAM. The three memories, main,
control, and image, use 30 IC packages. Translations between ECL and TTL
take 9 packages, other TTL logic 7 packages. The remaining three packages

are special devices: a 20 MHz clock, a 12-bit D/A converter, and a modem inter-
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face. Altogether, the LISSYN contains 11 gate arrays and 57 other logical
packages.

1 DESIGNING WITH GATE ARRAYS

The Lincoln Laboratory gate array is a large-scale integrated circuit
employing emitter coupled logic'ﬁ Each gate array chip has 64 essentially
identical cells, each consisting of a pattern of resistors and transistors. E
The gate array user configures the chip for his purpose by specifying the
metal connections that transform these cell components into logical elements and

then connects the logical elements into larger functions. Typical of the

logical complexity of a cell is three 3-input gates or one D-type master-slave
flip-flop.

Each gate array is provided with 24 input amplifiers and 24 output
drivers. Input and output circuits can be chosen to be inverting or non-
inverting, and their voltage levels match those of MECL 10K. Output
signal pins can be sacrificed to allow more inputs, but input amplifiers are
not available for these extra signals. Since the threshold voltage interior
to the gate array differs slightly from the MECL 10K threshold used on the input
amplifiers, extra input signals suffer reduced noise margin.

Gate delays of 0.65 nsec have been measured for lightly loaded gates
within an array3. However, an average delay of 1.5 nsec/gate, counting input and
output drivers, was typical of multi-gate paths on the LISSYN gate arrays.

The salient advantage of the gate array approach over full custom
LSI development is the quick turn-around time and the ease of use by the
system designer. In the ideal case, the wafers already exist with all diffusion

steps completed. The system designer cheooses logical cell configurations (e.g.,

(8]




a master-slave flip-flop) from a cell library and connects them on a logic

drawing into the function he desires, following a few simple loading rules.
The total elapsed time for the fabrication process is eight weekss.

In practice, it was necessary for the LISSYN system designer to become
more closely involved in the details of the gate array production. Some
examples of this involvement were:

1) A test program must be developed to automatically test

completed gate-array wafers. Close cooperation between the designer

of the array and the developer of the test program was needed.

2) Each gate array is simulated on a wirewrap board with

commercial ECL packages before it is produced, partly to check the

logical design and partly to check the test program mentioned above.

The insight of the designer was found tobe useful when it came time to

debug these simulators.

3) There were cases where the desired logical cell pattern did

not exist in the library. It was then necessary for the designer to

work on the transistor level and specify a new logical cell. The

major example of a new cell for the LISSYN was a one-cell master-

slave flip-flop to replace an earlier two-cell version.

Gate arrays come packaged in 64-pin square ceramic flat packs
with 16 leads on .050 inch centers along each edge. The flat packs are then
mounted on an ECL wirewrap board (Augat ECL-21-180), designed for 16-pin

DIP's, by means of a printed-circuit adaptor board that covers 4.5 of the

16-pin DIP positions.
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Cooling of the gate arrays, some of which dissipate 4 watts,
requires an air flow of 300 lincar feet per minute across a 4-finned cylindrical
heat sink which extends 0.5 in. above the ceramic package to which it is
epoxy bonded. Figure 2a shows a fully packaged and mounted gate array.

The LISSYN logic (excluding the tester) occupies
four of the six sections of the 180-DIP wirewrap board. The fifth section is
empty and the sixth holds the audio filter components. The LISSYN dissipates
60 watts of DC power. Figure 2b shows the completed LISSYN wirewrap board.

The full LISSYN system (including fans and power supplies,
but excluding the tester) fits into a cabinet 3.5 x 8.5 x 20 inches, a volume
of 0.35 cubic feet. The LISSYN cabinet is shown in Figure 2c.

I1E. INSTRUCTION FORMAT

All LISSYN instructions are 16 bits long and have a simple

two-field format:

OP (bits 10-15), a 6-bit instruction code

Y (bits 0-9), a numerical field.
The Y field is long enough to address the entire 1024-word RAM,which has octal
addresses 0-1777. Most LISSYN instructions which use Y as an address for
fetching data from or storing data into memory have both indexed and unindexed
versions. In the indexed version, Y is interpreted as a 10-bit positive
integer and added to the contents of the index register to form the memory
address. In this way it is possible to read the 32-word ROM, which has octal

addresses 2000-2037.




Fig.

2b.

The LISSYN wirewrap board.




Most jump instructions use Y as the address of the next instruction to
be executed if the jump condition 1is met. In this case Y replaces bits 0-9
of the present program counter, leaving bits 10-15 unchanged. In this way
program loops can be executed from the ROM even though Y is too short to address
the ROM. The only way a program can jump from the ROM to the RAM is to load
the program counter completely from a 16-bit memory location.

Some LISSYN instructions use Y as a numerical constant, in which case
it is interpreted as a signed, 2's complement number and sign-extended to

16 bits.

Iv. DETAILED STRUCTURE AND TIMING

A typical LISSYN instruction cycle can be followed with the aid
of the central processor block diagram, Figure 3,

Each LISSYN instruction is implemented in two epochs. Epoch §
is always 100 nsec (2 clock periods) long. Atits start, the address of the
next instruction is gated from the program counter, P, to the memory address
input. When the instruction emerges from memory, its 6-bit OP code is decoded
by the control memory into 32 control signals. The 10-bit numerical field
of the instructions, if it refers to an address for reading or writing memory,
is extended with zeros to 16 bits and sent to the ALU where it may be added
to the contents of the index register, X, or pass through unchanged. At the
end of epoch @, the resulting address is stored in a memory address register,
MAR. At the end of epoch @, the OP code and the numerical field are
latched into the OP and Y registers, respectively. Conditional jump instructions,

which do not require computation of memory address, use the ALU during epoch @

10




™~ 1" = svish

-20ssodoxd [BJI3USD NASSIT 943 ur syled eleq ¢ ‘814

30IM SL118 91 38V SHivg Q3738VING 1TV

310N
NOY 3OVAI O ¥31531 ¥31S3L
v/0 OL d/S WOH4 oL WO
}
2
lllllll L | e e

r i i 1
| [ |
_ [o8 | | [m= _
| | |
| l ]
| 5 1 |
| “ |
| 4 |
| _ Y |
| _ 1 I

i |
[ _ _
! _ ' _
| | |
| _ L (Poxsow) ,
| +0!l _
WO¥ 103 2§ X v9 o ERER | ¥ a | Qeom ] [Cewm ]
AHOW3W TOHINOD | v 1 ﬁ ] |
| . ! |
| | |
| | . ' ' 1 [
! _T (Papuax® .__
| | ubis) L \
I
| | :
_ do _ __ _ X !
| SAVHEY 3LV MWV & | SAVHYY 31V ¥34SNVHL ¥3LSIO3Y b |
1Sl | o e e (e bt i R S e e P T e et e e (e e e ol e e ol

9 ) 5
AHOW3IW —

viva HaQv
T (

P

1 1 T P




to test the jump conditions. X can he tested for negative or non-nevative
content. The accumulator, A, can be tested for negative, non-negative, zero,
or non-zero content. The result of any test is stored at the end of epoch

in a flip-flop not shown in Figure 3.

Epoch 1 is also 100 nsec (2 clocks) long for ever instruction
except multiply, when it is 850 nsec (17 clocks). At the start of epoch 1,
the OP code is decoded again in a different mode, since some control signals
will have to change from epoch # to epoch 1. The MAR is gated to the memory
address input to allow fetching of an operand or storing of the contents of a
registers then, any required computation (e.g., adding A and memory) is done,
and the result is stored in the appropriate register at the end of epoch 1.
In the case of a multiply, normal timing is interrupted and a sequence of 16
clocks is sent to the ALU gate arrays to perform a 16-bit signed 2's complement
multiplication by an add/shift iteration. The product appears in the 32-bit
combined A/Q register.

At the end of epoch 1, the program counter is updated. It
can be incremented by 1 (INCR), replaced in bits 0-9 by Y, or replaced
entirely by an address formed in the ALU.

Other registers in Figure 3 are Q (used in the ALU for
multiplication), BI (input buffer) and BO (output buffer). In addition
to its indexing function, the X register is a modest accumulator. It can be
loaded from memory, stored in memory, and a memory word can be added or

subtracted from its contents and the result stored in X.

V. THE TESTER

For the purposes of hardware debugging and software development,

P _J




a separate box called the tester can be attached to the pair of buses
shown in Figure 3 . The tester can do such tasks as: display the contents of
P, X, A, or any main memory location; write any 16-bit word into any RAM

location; display the instruction addressed by the P register; load the entire

1024-word RAM from a host computer; single-step through instructions; implement
a hardware breakpoint. The LISSYN can run as an LPC synthesizer with the

* tester removed and, in that case, the LISSYN RAM is loaded from a 1024 x 16 TTL
ROM (see Figure ]| ), via a bootstrap program in the 32-word LISSYN ECL ROM.

Most of the tester functions interface with the LISSYN in a

novel fashion. The tester interrupts the LISSYN as its highest-priority
peripheral device, causing it to branch to an address supplied by the tester.
That address is the start of one of several short service routines located in
the 32-word ECL ROM. These routines employ four special LISSYN instructions,
which direct the LISSYN to transfer data to and accept data from the tester.
This method of tester interfacing was adopted to save the multiplexers which
otherwise would have been needed to allow the tester to force data and memory
addresses onto LISSYN buses. It also allowed a single 16-bit cable to be used
for both address and data when writing LISSYN memory from the tester, thereby

saving scarce gate array pins.

VI. THE LPC SYNTHESIZER ALGORITHM

Figure 4 shows a block diagram of the LPC synthesizer algorithm.

It accepts as input a serial bit stream produced in real time from speech by

an LPC analyzer . The following description is for 4800 bits/sec, but

programs for 3600 and 2400 bits/sec also exist. The information consists of
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14 binary code words describing the pitch (if speech is voiced), energy, and

spectral shape of each frame (approximately 20 msec) of speech. If speech

is unvoiced during a frame, the pitch word contains a bit pattern that allows
synchronizing of the LISSYN with the bit stream, i.e., finding the start of

a frame.

Once synchronization is established, the incoming code is
unpacked and decoded. Two parameters, pitch and energy, are used to generate
excitation for the acoustic tube, which models the vocal tract. The tube is
specified by 12 coefficients, which are linearly interpolated approximately
each 5 msec. Every 130, ;sec, the acoustic tube generates another output speech
sample.

Almost the entire computational load of the LPC synthesizer con-
sists of cycling the acoustic tube. It requires 2 multiplies and 9 other in-
structions for each of the 12 tube coefficients for each sample of output

speech. This takes

(2 - 950 nsec + 9 - 200 nsec) - 12/130 ;lsec = 34.2% of real time.

The entire 4800 bit/sec synthesis takes 43% of real time. The usage of memory
is: program, 213 locations; constants (including decoding tables), 419 locations;
dynamic storage, 85 locations.

VII. LISSYN ASSEMBLER AND SIMULATOR

Almost all of the logically complex functions of the LISSYN, particularly

the 1/0 control, are buried inside gate arrays, where they are difficult to

diagnose for failures and impossible to repair. For this reason, a detailed

simulation of the system was needed to establish confidence that it could be
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made to work after assembly. The fact that each kind of gate array was

simulated in MECL 10K before fabrication was useful in catching some design
errors, but a full system simulation on a computer was still needed. The
system simulation also allowed development of the LPC synthesizer programs
while the LISSYN hardware was being built.

The LISSYN simulator runs on a Univac 1219 computer. It accepts
as input the binary code generated by the LISSYN assembler, which also runs on
the 1219. The simulator operates at quite a detailed level. Some functions
are traced at the register level, others at the single-gate level. The machine
state is updated at every clock period. Interrupts and data transfers between
the LISSYN and its I/0 devices are also simulated. The LPC synthesizer
program was run on the simulator to the extent of entering sample frames of
code and observing the waveform produced. One second of speech would take
24 hours to simulate.

As a result of the simulation, a redesign of the LISSYN 1/0 control
was required. The corresponding gate array masks were changed before
fabrication began, with a delay of only a day or two. The month of effort spent
in developing the simulator program paid off handsomely. None of the five kinds
of gate arrays had to be redesigned after their first fabrication. The LPC
synthesis program ran the first time it was loaded into the LISSYN.

VIIT. SUMMARY AND CONCLUSIONS

The Lincoln Integrated Speech Synthesizer (LISSYN), was
designed to impiement a specific LPC synthesis algorithm, as a demon-

stration of the ease and speed of realizing a complex logical system

16




in custom-built ECL gate arrays. The whole system was designed and built in
less than a year. The gate array production process is sufficiently flexible
that a major change in one gate array design was made shortly before the
mask-making stage with just a few days of added delay. Hardware simulation of
each type of gate array and detailed software simulation of the overall
system produced a vreliable logical design despite the complexity of the gate
arrays.

Virtually every part of the LISSYN that could have been made from
gate array logic was included within the 11 gate arrays of 5 types. There
were only 8 16~pin commercial packages of ECL logic gates. The rest of the packages
were not suitable for integration onto gate arrays: 26 ECL memory packages,

1 ECL crystal-controlled clock, 21 packages using a +5V supply, 1 D/A converter.

Other parameters of the LISSYN are: single 1024 x 16 main memory for
data and program, 200 nsec instruction cycle, 950 nsec add/shift multiply,
binary serial input, analog output via 12-bit D/A converter and desampling
filter, 0.35 cu. ft. volume, 60 watts DC power.

The goal of the LISSYN project was to produce a system with adequate
computing power for LPC synthesis, with a minimum amount of hardware and
engineering effort. The LISSYN runs the linear predictive speech synthesis in
43% of real time. However, this speed is much less than can be obtained from gate
array logic, which has about 1.5 nsec/gate average delay. The addition of a
faster multiplier rather than the add/shift system used for LISSYN would permit
the use of pipelining techniques that could make the LISSYN at least twice

as fast as it is.
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The development of a fast 16-bit multiplier, small enough to reside in
a LISSYN type machine without significantly increasing its overall size or power
consumpt ion, appears to be possible using dielectric isolation techniques.
A reasonable extension of the LISSYN project would therefore be the fabrication
of such a muitiplier and its subsequent inclusion in either a full-duplex

gate array vocoder or a multiple-synthesizer version of the LISSYN.

18




APPENDIX A

DESCRIPTION OF LISSYN GATE ARRAYS

1) ALU 4-Bit Slice

Figure Al shows a block diagram of the ALU gate array. The heavy

lines represent 4-bit data paths. There are three 4-bit registers of master-

slave flip-flops. The B register is simply an output buffer for the adder
output, which also appears directly on the S bus. A and Q are general registers
that can provide input to and store output from the adder. The shifted inputs
to A and Q are chosen to facilitate linking A and Q for add/shift multiplication.
There is a zero detector on the output of the A register. External data can
enter on two 4-bit buses, L and R. The usual 2's complement arithmetic
operations and logical operations are available.

The ALU gate array has greater capability than was needed for the
LISSYN. For example, the LISSYN makes no use of the ability to add or
subtract Q from memory, detect overflow (OVF), and provide group propagate
(GP) and generate (GG) signals for carry look-ahead.

2) Register-Transfer 4-Bit Slice

The block diagram of 4 linked register -transfer gate arrays appears
in Figure 3 and their operation is described in section IV . One feature
not appearing in the linked drawing is carried in and out for the incrementer ;
of the program counter. Another is two special control lines that allow the
upper 2 bits to be differentiated from the lower two bits in order to implement

the 10-bit masking and sign extension of the Y field, whose boundary does

not coincide with the boundary of a 4-bit slice.
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3) Control A

The Control A gate array performs four nearly separate control
functions. See Figure A2

Timing Generator - This circuit receives as input the 20 MHz oscillator ]

and three of the timing phases produced by the phase generator gate array.

It produces timing signals for the rest of the LISSYN. ACLK clocks the ALU

gate array. EP1l and EPf) define the two instruction epochs and clock almost
everything else in the LISSYN. (The phase generator and a few flip-

flops are clocked directly by the oscillator.) In addition to clocks, the
timing generator produces signals to start or stop the phase generator on
the multiply (MUL) and halt (HLT) instructions and multiply phases that are
used elsewhere in Control A to distinguish among the first, last, and
remaining mu}tiplier bits.

End Logic - This circuit examines the appropriate arithmetic status
bits and computes the proper value to shift into the high order bit of the
A register. Most of its complexity stems from the special treatment of the
sign bit in the 2's complement add/shift multiply.

OP Code Latch and Conditioner - This circuit stores the OP code

during epoch 1 of the instruction cycle and generates the conditional OP
code for addressing the control ROM. See Appendix B, Instruction Decoding.

Control Modification A - This circuit modifies S outputs of the control

ROM, mostly to aid in multiplies and index additions. See Appendix B,
Instruction Decoding.
4) Control B

The Control B gate array performs five nearly separate functions.

See Figure A3 .
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Fig. A2. The control A gate array.
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Fig. A3. The control B gate array.




Real-Time Clock - This circuit runs directly off the oscillator

and produces a symmetric square wave whose period is controllable in incre-
ments of 1.6lisec up to 203.2Llsec. The LISSYN real-time clock is hard-
wired for a 129'6[15CC period and is used to clock the D/A converter.

Input/Output Control - This logic interfaces the LISSYN with its

three peripheral devices, the D/A converter, the S/P converter, and the tester.
It generates an interrupt (INT) signal and two I/0 status signals.

There is an interrupt lockout flag that can be set and cleared under program
control. Tester interrupts can't be locked out.

Extmux - This circuit controls the handling of entry and return addresses
for programmed subroutines and interrupt service routines. Main memory
addresses 0-4 are used to store these addresses.

Test Logic - This circuit stores the result of any test for a conditional
jump. If the jump is to a subroutine, the writing of the return address
is also conditional. The outputs are a jump condition bit to control the
updating of the program counter and a fanned-out memory write enable capable
of driving all the RAM chips.

Control Modification B - This circuit modifies 4 outputs of the

control ROM, mostly to aid in index addition. See Appendix B, Instruction
Decoding. ‘

PHASE GENERATOR

See Figure A4. This circuit converts the 20 MHz oscillator signal
into four timing phase signals, PHA, PH1, PH2, PH3 which are

then used for gating other functions on the Control A and Control B gate

arrays. The phase generator can be started, stopped, single-stepped, or




osc—{ — P13 e 2-13%9]

PHASE GENERATOR [~ — PHI

GATE ARRAY f—> PH2

CLEAR —— —— PH3

Ll

STOP START STEP CYCLE
_.l 50 |
nsec

0SscC
R s % 3 i

PH1 r_—l
o i
a L ol

ol
4

B8IT I BIT | BIT
13 14 15

NON-MULTIPLY ]
INSTRUCTION ] MHEEIELE g

Fig. A4. The phase generator gate array.
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cycled to a known starting state under the control of signal lines. When

the LISSYN is executing a multiply, the phase generator is temporarily stopped
and then restarted under the control of the timing generator in Control A.
During the pause, the timing generator produces 16 ACLK signals for the ALU

to carry out the add/shift iterations. The phase-generator design predated

the LISSYN project. The chip area is less than half utilized.




APPENDIX B

INSTRUCTION DECODING

A tradeoff of increased complexity for a decrease in critical
decoding delay and a decrease in control memory size was made in the LISSYN.
The pattern of the 32 control signals depends not just on the 6-bit OP code
of the instruction being executed but also on which epoch (f or 1) of that
instruction is in progress and, for multiplication, which bit of the multiplier
(low-order, sign, or other) is being examined and what value that bit has.

If all these parameters were used to form the address for a single control
memory, it would need 1024 words of 32 bits each, an unacceptable amount.

In addition, it would unduly slow index addition and multiplication.
Therefore the LISSYN uses the decoding scheme shown in Figurep) . It is
less regular in form but requires only 64 words of 32 bits (8 packages

of 32 x 8) for the control memory. In addition, it is faster in the critical
delay paths of index addition and multiplication.

Figure Bl reveals that decoding is a 3-stage process.

I The 6 bits of the OP code and the epoch-defining signal EPI

are expanded by the OP code conditioner into 11 signals to be used

for addressing the eight 32 x 8 control ROM's near the top of FigureBl .

2 The ROM's decode their addresses to produce 32 control signals.
3. Nine of the control signals are modified in the gate arrays.
Notice that not all the control ROM's are addressed in the same manner.

ROM's C@P, C1, D@, and D1 produce control signals that needn't vary from

epoch # to epoch 1. These can use the 6 bits of the OP code for addressing

Y -
“ /
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in the usual manner. ROM's B@ and Bl produce control signals which do vary
from epoch @ to epoch 1. However. careful assignment of OP codes permits
the control signal pattern to be insensitive to OP code bit 2 during epoch @
and to bit 3 during epoch 1. In each epoch, a pair of instructions effectively
shares each word in a ROM, but the pairing is different in the two epochs.
ROM's A@ and Al produce control signals that vary between epoch @ and epoch 1
when OP code bit 1 is a 1 but do not vary between epochs when OP code
bit 1 is a 0. In epoch @ a pair of instructions share each word of ROM AQ,
but in epoch 1, each instruction has its own word in ROM A@ or ROM Al.

The modifications needed for index addition are such that the critical
outputs of the control modification A block are independent of the inputs
from the ROM's, so the delay through the ROM's is avoided. During multiplication,
the ROM outputs do not change with the position of the bit being processed, so

again the delay through control modification A is small.




APPENDIX C

THE LISSYN INSTRUCTION SET

Each LISSYN instruction has a 6-bit OP code and a 10-bit numerical

field, Y. The following abbreviations have been used in the instruction

table:

ILO

TP

37}

M(n)

@ >

=|

The ten-bit Y field, interpreted as a positive integer, extended
with zeros to 16 bits.

The ten-bit Y field, interpreted as a signed, 2's complement integer,
sign extended to 16 bits.

The ten-bit Y field replaces bits (-9 of the register being altered.
Bits 10-15 of that register are unchanged.

The interrupt lockout flag.

The 16 bits on the tester bus to the LISSYN at the end of instruction
epoch .

The 16 bits on the tester bus to the LISSYN at the end of instruction
epoch 1.

The n-th location of main memory

2's complement addition

2's complement subtraction or negation
Signed 2's complement multiplication
logical OR

logical AND

logical exclusive OR

logical complement of register R




PROGRAMMED JUMPS

OCTAL OP MNEMONIC{ CONDITION REGISTER OR NEW VALUE OTHER
CODE AT START FLAG ALTERED INFORMATION
OF INSTRUC-
TION
A>0 P Y, msk conditional jump
W} JPZAS M(0) P to subroutine
A<0 P P % 1
f1 JNAS A< O P Y, msk conditional jump
M(0) P to subroutine
A=0 P P+l
04 JZAS A=0 P Y, msk conditional jump
M(0) p to subroutine
A#£O P P+1
pS JUZAS A#0 P Y, msk conditional jump
M(0) P to subroutine
A=0 P P+1
96 101JP P M(1)+Y,sx | return from
1/0 subroutine
07 JPS P Y, msk
10 JPZA > Y, msk
=0 P P+l
11 JNA = P Y, msk
>0 P P+ 1
12 JPZX X=20 P Y, msk
X X -1
X=<20 P P 1
X X -1
13 JNX X =0 P Y, msk
X X %
X0 P 2 |
X X +1

g p—
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PROGRAMMED JUMPS (Cont'd)

OCTAL OP MNEMONIC CONDITION REGISTER OR NEW VALUE OTHER
CODE AT START FLAG ALTERED INFORMATION
OF INSTRUC-
TION
14 JZA A=0 P Y, msk
A£O P P+ 1
15 JUZA A£O P Y, msk
A=D p !
16 1JP p M(0)+Y, sx return from
subroutine
17 JP P Y, msk
25 JPCON ' 4 T3 Used to start
LISSYN at address
in tester switches
M_l SV('.EI,LANIE()I IS CONTROL 1 NiS1'Rll(I'I' IONS
fn2 INT D/A M(1) p Not recommended
Interrupt P 2 as a programmed
S/p M(1) p 1nstruct?on. Result
[ v 5 o when no interrupt
nterrupt I 3 : . :
is present is not
Tester M(4) P uniquely known.
Interrupt 34 T1
2p HLT none LISSYN stops
execution. If start
switch is pushed,
the next instruc-
tion will be
taken from P+1.
21 SIL 1LO 1(set)
P P+1
34 RIL 1LO P(cleared)
P P+ )
MEMORY READ/WRITE
22 STCON M(T@) T1 Used to write
p P+ 1 memory from

tester




MEMORY READ/WRITE (Cont'd)

OCTAL OP MNEMONIC CONDITION REGISTER OR NEW VALUE OTHER
CODE AT START FLAG ALTERED INFORMATION
OF INSTRUC-
TION
24 AXCON P P+ 1 A or X register
is displayed at
tester, according
to switch on
tester.
32 P OYIX X Y, sx
P |2 I8 |
35 | LDCON p P+ 1 M(TP) is dis-
' played at
tester
|
47 ' LDQX Q M(Y+X)
é p P+ 1
57 LDQ Q M(Y)
: P P+1
60 l STAX M(Y+X) A
l P P +1
70 I STA M(Y) A
‘ P P+1
61 STXX M(Y+X) X
P P+1
71 STX M(Y) X
| P P 1
|
62 STBX M(Y+X) BI
l P P+l
72 . STB M(Y) BI
} P P +1
63 ' STPX M(Y+X) P
P P+ 1
73 STP M(Y) P
P P+1
64 LDAX A M(Y+X)
P P+ 1

2]
2
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MEMORY READ/WRITE (Cont'd)

OCTAL OP | MNEMONIC | CONDITION | REGISTER OR NEW VALUE | OTHER
CODE AT START FLAG ALTERED INFORMATION
OF INSTRUC-
| TION e
74 " LDA A M(Y)
i p B
!
65 . LDXX X M(Y+X)
: p B
75 ! LDX X M(Y)
p Py
66 LDBX BO M(Y+X)
p ]
76 LDB { BO M(Y)
R ‘ P+
67 LDPX p FoM(Y+x)
77 , Lop p M(Y)
_ ARTTHMETIC/LOGICAL INSTRUCTIONS
93 L e T A Ty : Sl
! i P I Pa1 ‘
! | 1
23 SUBX X X-M(Y) !
¢ : P P +1 \
; |
33 . ADDX : X [ OX#M(Y) |
P { = Pk i
! i
! )
a9 ADDAX | | A i AMQY+X) !
' p Eoop o !
50 ADDA | A | A+M(Y) !
! N | P+ 1 ‘ .
; g ; 3 :
a1 | AXORX | % LA @ M(YsX) !
I ¥ p l P+ 1 H
1
51 AXOR A A8 M(Y) |
p P+ 1 i
42 SUBAX A A-M(Y+X) |
[ v j 2ey )




ARITHMETIC/LOGICAL FUNCTIONS (Cont'd)

' OCTAL OP | MNEMONIC | CONDITION | REGISTER OR NEW VALUE | OTHER
CODE AT START FLAG ALTERED INFORMATION
' OF INSTRUC-
TION
52 SUBA A A-M(Y)
I P P+ 1
i 43 | MMAX A M(Y+X) -A
; ! p P+l
{ '
' 53 © MMA A M(Y)-A
P P
44 AANDX LA AAM(Y+X)
R P+ 1 i
54 AAND '; P A L AAM(Y) !
; P LP o+ 1 1
; ; ,
as MULX ! A [ QM(Y+X), | Takes 950 nsec
' bits 16-31:
{ Q o QM(Y+X),
; . bits p-15
1 P i P +1 {
’ |
4
55 MUL A LoQ-M(y), ! Takes 950 nsec
; bits 16-31
! Q { QeMeY),
. bits p-15
H P P %l
46 AORX A AVM(Y+X)
P o o
3
56 AOR i . A CAM(Y)
: ol {RE el {
3 ] i H
26  HVAQ | A, Q { (A,Q/2 ' Linked right i
! p P+l ! shift with | 3
i s " sign extension '
27 DBAQ A, Q 2(A, Q) . Linked left
’ P P+ 1 | shift
| . \ !
30 CMPA ! A A '
p P +1 !
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OCTAL OP
CODE

31

36

37

ARITHMETIC/LOGICAL FUNCTIONS (Cont'd)

AT START

MNEMONIC |CONDITION

STQA

CSA

DBA

BIONT ol

IOF INSTRUC -

REGISTER OR NEW VALUE OTHER

FLAG ALTERED INFORMATION

A Q Used to retrieve

P P+1 low-order
product. Q can-
not be stored
in memory.

A -A

P P+1

A 2A

P P +1
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